Gloster Meteor Mk8

Gloster Meteor

From Wikipedia, the free encyclopedia

The Gloster Meteor was the first British jet fighter and the Allies’ only jet aircraft to achieve combat operations during the Second World War. The Meteor’s development was heavily reliant on its ground-breaking turbojet engines, pioneered by Sir Frank Whittle and his company, Power Jets Ltd. Development of the aircraft began in 1940, although work on the engines had been under way since 1936. The Meteor first flew in 1943 and commenced operations on 27 July 1944 with No. 616 Squadron RAF. The Meteor was not a sophisticated aircraft in its aerodynamics, but proved to be a successful combat fighter. Gloster’s 1946 civil Meteor F.4 demonstrator G-AIDC was the first civilian-registered jet aircraft in the world.[1]

Several major variants of the Meteor incorporated technological advances during the 1940s and 1950s. Thousands of Meteors were built to fly with the RAF and other air forces and remained in use for several decades. The Meteor saw limited action in the Second World War. Meteors of the Royal Australian Air Force (RAAF) fought in the Korean War. Several other operators such as Argentina, Egypt and Israel flew Meteors in later regional conflicts. Specialised variants of the Meteor were developed for use in photographic aerial reconnaissance and as night fighters.

The Meteor was also used for research and development purposes and to break several aviation records. On 7 November 1945, the first official airspeed record by a jet aircraft was set by a Meteor F.3 at 606 miles per hour (975 km/h). In 1946, this record was broken when a Meteor F.4 reached a speed of 616 miles per hour (991 km/h). Other performance-related records were broken in categories including flight time endurance, rate of climb, and speed. On 20 September 1945, a heavily modified Meteor I, powered by two Rolls-Royce Trent turbine engines driving propellers, became the first turboprop aircraft to fly.  On 10 February 1954, a specially adapted Meteor F.8, the “Meteor Prone Pilot”, which placed the pilot into a prone position to counteract inertial forces, took its first flight.

In the 1950s, the Meteor became increasingly obsolete as more nations introduced jet fighters, many of these newcomers having adopted a swept wing instead of the Meteor’s conventional straight wing; in RAF service, the Meteor was replaced by newer types such as the Hawker Hunter and Gloster Javelin. As of 2018, two Meteors, G-JSMA and G-JWMA, remain in active service with the Martin-Baker company as ejection seat testbeds.  One further aircraft in the UK remains airworthy, as does another in Australia.

Development

Origins

The development of the turbojet-powered Gloster Meteor was a collaboration between the Gloster Aircraft Company and Sir Frank Whittle‘s firm, Power Jets Ltd. Whittle formed Power Jets Ltd in March 1936 to develop his ideas of jet propulsion, Whittle himself serving as the company’s chief engineer.  For several years, attracting financial backers and aviation firms prepared to take on Whittle’s radical ideas was difficult; in 1931, Armstrong-Siddeley had evaluated and rejected Whittle’s proposal, finding it to be technically sound but at the limits of engineering capability.  Securing funding was a persistently worrying issue throughout the early development of the engine.  The first Whittle prototype jet engine, the Power Jets WU, began running trials in early 1937; shortly afterwards, both Sir Henry Tizard, chairman of the Aeronautical Research Committee, and the Air Ministry gave the project their support.

On 28 April 1939, Whittle made a visit to the premises of the Gloster Aircraft Company, where he met several key figures, such as George Carter, Gloster’s chief designer.  Carter took a keen interest in Whittle’s project, particularly when he saw the operational Power Jets W.1 engine; Carter quickly made several rough proposals of various aircraft designs powered by the engine. Independently, Whittle had also been producing several proposals for a high-altitude jet-powered bomber; following the start of the Second World War and the Battle for France, a greater national emphasis on fighter aircraft arose.  Power Jets and Gloster quickly formed a mutual understanding around mid-1939.

In spite of ongoing infighting between Power Jets and several of its stakeholders, the Air Ministry contracted Gloster in late 1939 to manufacture a prototype aircraft powered by one of Whittle’s new turbojet engines.  The single-engined proof-of-concept Gloster E28/39, the first British jet-powered aircraft, conducted its maiden flight on 15 May 1941, flown by Gloster’s chief test pilot, Flight Lieutenant Philip “Gerry” Sayer.  The success of the E.28/39 proved the viability of jet propulsion, and Gloster pressed ahead with designs for a production fighter aircraft.  Due to the limited thrust available from early jet engines, it was decided that subsequent production aircraft would be powered by a pair of turbojet engines.

In 1940, for a “military load” of 1,500 lb (680 kg), the Royal Aircraft Establishment (RAE) had advised that work on an aircraft of 8,500 lb (3,900 kg) all-up weight, with a total static thrust of 3,200 lbf (14 kN) should be started, with an 11,000 lb (5,000 kg) design for the expected, more powerful, W.2 and axial engine designs. George Carter’s calculations based on the RAE work and his own investigations was that a 8,700-to-9,000-pound (3,900-to-4,100-kilogram) aircraft with two or four 20 mm cannons and six 0.303 machine guns would have a top speed of 400–431 miles per hour (644–694 km/h) at sea level and 450–470 miles per hour (720–760 km/h) at 30,000 feet (9,100 m). In January 1941 Gloster were told by Lord Beaverbrook that the twin jet fighter was of “unique importance”, and that the company was to stop work on a night-fighter development of their F.9/37 to Specification F.18/40.

Prototypes

In August 1940, Carter presented Gloster’s initial proposals for a twin-engined jet fighter with a tricycle undercarriage.  On 7 February 1941, Gloster received an order for twelve prototypes (later reduced to eight) under Specification F9/40.  A letter of intent for the production of 300 of the new fighter, initially to be named Thunderbolt, was issued on 21 June 1941; to avoid confusion with the USAAF Republic P-47 Thunderbolt which had been issued with the same name to the RAF in 1944, the aircraft’s name was subsequently changed to Meteor.  During the aircraft’s secretive development, employees and officials made use of the codename Rampage to refer to the Meteor, as similarly the de Havilland Vampire would initially be referred to as the Spider Crab. Test locations and other key project information was similarly obscured.

Although taxiing trials were carried out in 1942, it was not until the following year that any flights took place due to production and approval holdups with the Power Jets W.2 engine powering the Meteor.  Due to the delays at subcontractor Rover, who was struggling to manufacture the W.2 engines on schedule, on 26 November 1942, production of the Meteor was ordered to stop; considerable interest was shown in Gloster’s E.1/44 proposal for a single-engine fighter, unofficially named Ace.  Gloster continued development work on the Meteor and the production-stop order was overturned in favour of the construction of six (later increased to eight) F9/40 prototypes alongside three E.1/44 prototypes.  Rover’s responsibilities for development and production of the W.2B engine were also transferred to Rolls-Royce that year.

On 5 March 1943, the fifth prototype, serial DG206, powered by two substituted de Havilland Halford H.1 engines owing to problems with the intended W.2 engines, became the first Meteor to become airborne at RAF Cranwell, piloted by Michael Daunt.  On the initial flight, an uncontrollable yawing motion was discovered, which led to a redesigned larger rudder; however, no difficulties had been attributed to the groundbreaking turbojet propulsion.  Only two prototypes flew with de Havilland engines because of the low flight endurance they were capable of providing.  Before the first prototype aircraft had even undertaken its first flight, an extended order for 100 production-standard aircraft had already been placed by the RAF.

The first Whittle-engined aircraft, DG205/G, flew on 12 June 1943 (later crashing during takeoff on 27 April 1944) and was followed by DG202/G on 24 July. DG202/G was later used for deck handling tests aboard aircraft carrier HMS Pretoria CastleDG203/G made its first flight on 9 November 1943, later becoming a ground instructional airframe. DG204/G, powered by Metrovick F.2 engines, first flew on 13 November 1943; DG204/G was lost in an accident on 4 January 1944, the cause believed to have been an engine compressor failure due to overspeed.  DG208/G made its début on 20 January 1944, by which time the majority of design problems had been overcome and a production design had been approved. DG209/G was used as an engine testbed by Rolls-Royce, first flying on 18 April 1944. DG207/G was intended to be the basis for the Meteor F.2 with de Havilland engines, but it did not fly until 24 July 1945, at which time the Meteor 3 was in full production and de Havilland’s attention was being redirected to the incoming de Havilland Vampire, thus the F.2 was cancelled.

Into Production

On 12 January 1944, the first Meteor F.1, serial EE210/G, took to the air from Moreton Valence. It was essentially identical to the F9/40 prototypes except for the addition of four nose-mounted 20 mm (.79 in) Hispano Mk V cannons and some changes to the canopy to improve all-round visibility.  Due to the F.1’s similarity to the prototypes, they were frequently operated in the test program to progress British understanding of jet propulsion, and it took until July 1944 for the aircraft to enter squadron service.  EE210/G was later sent to the U.S. for evaluation in exchange for a pre-production Bell XP-59A Airacomet, the Meteor being flown first by John Grierson at Muroc Army Airfield on 15 April 1944.

Originally 300 F.1s were ordered, but the total produced was reduced to 20 aircraft as the follow-on orders had been converted to the more advanced models.  Some of the last major refinements to the Meteor’s early design were trialled using this first production batch, and what was to become the long-term design of the engine nacelles was introduced upon EE211.  The original nacelles had been discovered by the RAE to suffer from compressibility buffeting at higher speeds, causing increased drag, and the re-designed longer nacelles eliminated this and provided an increase in the Meteor’s maximum speed. The lengthened nacelles were introduced on the final fifteen Meteor IIIs.   EE215 was the first Meteor to be fitted with guns; EE215 was also used in engine reheat trials, the addition of reheat increasing top speed from 420 mph to 460 mph. and was later converted into the first two-seat Meteor.  Due to the radical differences between jet-powered aircraft and those that preceded, a special Tactical Flight or T-Flight unit was established to prepare the Meteor for squadron service, led by Group Captain Hugh Joseph Wilson.  The Tactical Flight was formed at Farnborough in May 1944, the first Meteors arriving the following month, upon which both tactical applications and limitations were extensively explored. 

On 17 July 1944, the Meteor F.1 was cleared for service use. Shortly afterwards, elements of the Tactical Flight and their aircraft were transferred to operational RAF squadrons.  The first deliveries to No. 616 Squadron RAF, the first operational squadron to receive the Meteor, began in July 1944.  When the F.2 was cancelled, the Meteor F.3 became the immediate successor to the F.1 and alleviated some of the shortcomings of the F.1.  In August 1944, the first F.3 prototype flew; early F.3 production aircraft were still fitted with the Welland engine as the Derwent engine’s production line was only just starting at this point. A total of 210 F.3 aircraft were produced before they were in turn superseded by production of the Meteor F.4 in 1945.

Several Meteor F.3s were converted into navalised aircraft. The adaptations included a strengthened undercarriage and arrester hook. Operational trials of the type took place aboard HMS Implacable. The trials included carrier landings and takeoffs.  Performance of these naval prototype Meteors proved to be favourable, including takeoff performance, leading to further trials with a modified Meteor F.4 fitted with folding wings; a ‘clipped wing’ was also adopted.  The Meteor later entered service with the Royal Navy, but only as a land-based trainer, the Meteor T.7, to prepare pilots of the Fleet Air Arm for flying other jet aircraft such as the de Havilland Sea Vampire.

While various marks of Meteor had been introduced by 1948, they had remained very similar to the prototypes of the Meteor; consequently, the performance of the Meteor F.4 was beginning to be eclipsed by new jet designs. Gloster therefore embarked on a redesign programme to produce a new version of the Meteor with better performance.  Designated Meteor F.8, this upgraded variant was a potent fighter aircraft, forming the bulk of RAF Fighter Command between 1950 and 1955. The Meteor continued to be operated in a military capacity by several nations into the 1960s.

Specifications (Meteor F.8)

 

General characteristics

  • Crew: 1
  • Length: 44 ft 7 in (13.59 m)
  • Wingspan: 37 ft 2 in (11.33 m)
  • Height: 13 ft 0 in (3.96 m)
  • Wing area: 350 sq ft (33 m2)
  • Airfoil: root: EC(12.5)40/0640 ; tip: EC1040/0640
  • Empty weight: 10,684 lb (4,846 kg)
  • Gross weight: 15,700 lb (7,121 kg)
  • Powerplant: 2 × Rolls-Royce Derwent 8 centrifugal flow turbojet engine, 3,600 lbf (16 kN) thrust each

Performance

  • Maximum speed: 600 mph (966 km/h; 521 kn) at 10,000 ft (3,000 m)
  • Maximum speed: Mach 0.82
  • Range: 600 mi (521 nmi; 966 km)
  • Service ceiling: 43,000 ft (13,000 m)
  • Rate of climb: 7,000 ft/min (36 m/s)
  • Time to altitude: 30,000 ft (9,100 m) in 5 minutes
  • Wing loading: 44.9 lb/sq ft (219 kg/m2)
  • Thrust/weight: 0.45 lbf/lb (0.0044 kN/kg)

Armament

 

 

 

 

 

0 Comments

Submit a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.